MICROCOPY RESOLUTION TEST CHART THE PROPERTY OF O Unclassified | SECURITY CLASSIFICATION OF | | | | | | | |--|--------------------------|---|--|------------------------|---------------------------|--| | 4.5 | A 177 30 | 14 TION | PAGE | | | | | Unclassified | A177 30 | RICTIVE | MARKINGS | | | | | 2a SECURITY CLASSIFICATION | | | A AVAILABILITY | | · | | | 26 DECLASSIFICATION / DOWNGRADING SCHEDULE | | Approved for public release; distribution unlimited | | | | | | | · | | | | | | | 4 PERFORMING ORGANIZATION REPORT NUMBER(S) | | 5 MONITORING ORGANIZATION REPORT NUMBER(S) | | | | | | 68 NAME OF PERFORMING ORGANIZATION 66 OFFICE SYMBOL | | 78 NAME OF MONITORING ORGANIZATION | | | | | | Department of Chemistry
Duke University | (If applicable) | Office of Naval Research | | | | | | 6c ADDRESS (City, State, and ZIP Code) | | 76 ADDRESS (C | ity, State, and Zil | State, and ZIP Code) | | | | Durham, NC 27706 | 800 N. Qu | 800 N. Quincy Street | | | | | | • | Arlington, VA 22217-5000 | | | | | | | 88 NAME OF FUNDING SPONSORING | 86 OFFICE SYMBOL | 9 PROCUREMEN | 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER | | NUMBER | | | ORGANIZATION Office of Naval Research | (If applicable) | N00014-8 | 33-K-0572 | | | | | 8c ADDRESS (City, State, and ZIP Code) | <u> </u> | 10 SOURCE OF | FUNDING NUMBE | RS | | | | 800 N. Quincy Street | | PROGRAM
ELEMENT NO | PROJECT
NO | TASK
NO | WORK UNIT
ACCESSION NO | | | Arlington, VA 22217-5000 | | NR | 053 | 841 | | | | 11 TITLE (Include Security Classification) | | | | | | | | Synthesis and Characterizatio
(Ga-As) ? Ring: Crystal Struc | n of a Dimeric T | [ris(arsino) | gallane Con | taining a N | Nonplanar | | | 12 PERSONAL AUTHOR(S) | cure or transaction | CH9/9ASJ (Ga | 17 | | | | | R.L. Wells, A.P. Purdy, K.T. | | | | | | | | 13a TYPE OF REPORT 13b TIME C
Technical FROM | OVERED
TO | 14 DATE OF REP
86/2/11 | ORT (Year, Month | 1, Day) 15 PA | GE COUNT
8 | | | 16 SUPPLEMENTARY NOTATION | | | | | | | | Accepted for publication in t | he <u>Journal</u> of Oi | ganometalli | c Chemistry | | | | | 17 COSATI CODES | 18 SUBJECT TERMS (| Continue on rever | se if necessary ai | nd identify by t | olock number) | | | FIELD \ GROUP SUB-GROUP | | um-arsenic, Crystal Structure, Dimeric
)gallane, Nonplanar (Ga-As), Ring | | | | | | |] IIIs(arsino) | gallane, No | npianar (Ga- | -As) ₂ King | | | | 19 ABSTRACT (Continue on reverse if necessary | and identify by block i | number) n | - 1111 | A Comment | and the second | | | The dimer [[(Me_SiCh | I2)2AsJ3Gal2, on | ly the secor | nd tris(arsi | no)gallane | to | | | be completely characteriz | ed has been nr | enared from | the reaction | n of | | | | <u>.</u> | | • | | | | | | (Me ₃ SiCH ₂) ₂ AsLi with GaCl | 3; X-ray crysta | llographic a | inalysis sho | ws it to b | e | | | the first example of a co | ompound containí | ng a distino | tly nonplan | ar four-me | mbered | | | ring of alternating four- | • | - | , | 1 : | | | | OTHE FILE CO | CV C | an the T | • | 70 | FEB 2 5 1987 | | | 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT | | 21 ABSTRACT S | ECURITY CLASSIF | | | | | ☑ UNCLASSIFIED/UNLIMITED ☑ SAME AS | RPT DTIC USERS | Unclass | ified | | E | | | 22a NAME OF RESPONSIBLE INDIVIDUAL Richard L. Wells | | 226 TELEPHONE
(919) 68 | (Include Area Coo
84-6404 | De) 22c OFFICE | 24WBOL | | | | PR edition may be used u | ntil exhausted | SECURIT | Y CLASSIFICATIO | A. O. T DA C. | | 83 APR edition may be used until exhausted All other editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE Unclassified OFFICE OF NAVAL RESEARCH Contract N00014-83-K-0572 R&T Code 4135008---02 Replaces Old Task #NR053-841 Technical Report No. DU/DC/TR-05 Synthesis and Characterization of a Dimeric Tris(arsino)gallane Containing a Nonplanar (Ga-As)₂ Ring: Crystal Structure of {[(Me₃SiCH₂)₂As]₃Ga}₂ - by R.L. Wells, A. P. Purdy, K. T. Higa, A.T. McPhail, and C.G. Pitt Prepared for Publication in the Journal of Organometallic Chemistry Duke University Department of Chemistry Durham, NC 27706 February 11, 1987 Reproduction in whole or in part is permitted for any purpose of the United States Government. This document has been approved for public release and sale; its distribution is unlimited. ### Preliminary communication RICHARD L. WELLS*, ANDREW P. PURDY, KELVIN T. HIGA, ANDREW T. McPHAIL, and COLIN G. PITT* Department of Chemistry, Paul M. Gross Chemical Laboratory, Duke University, Durham, NC 27706 (U.S.A.) ### Summary The dimer {[(Me₃SiCH₂)₂As]₃Ga}₂, only the second tris(arsino)gallane to be completely characterized, has been prepared from the reaction of (Me₃SiCH₂)₂AsLi with GaCl₃; X-ray crystallographic analysis shows it to be the first example of a compound containing a distinctly nonplanar four-membered ring of alternating four-coordinate Ga and As atoms. Recently, we applied two new synthetic methods to the preparation of compounds containing a gallium-arsenic bond, <u>viz.</u>, dehalosilylation between a silylarsine and a halogallane [1], and coupling using a lithium arsenide and a chlorogallane [2]. Among the compounds prepared by both methods is Dedicated to Professor G. E. Coates on the occasion of his 70th birthday. the first example of a tris(arsino)gallane, monomeric (Mes_As)_Ga, which X-ray analysis [2] has shown to contain three-coordinate gallium and arsenic. Subsequently, (But_As)_Ga was reported by others, but data for a crystal structure were not obtainable [3]. We now report the structure of a second tris(arsino)gallane, dimeric [(Me_3SiCH_2)_2As]_3Ga (1), prepared by the lithium arsenide method. Interestingly, as noted previously, the reaction of (Me_3SiCH_2)_2AsSiMe_3 with GaCl_3 did not yield 1 [1]. Compound 1 has a solid state structure containing a distinctly nonplanar four-membered ring of alternating four-coordinate Ga and As atoms. This form contrasts with the planar, centrosymmetric (Ga-As)_2 units in [(Me_3SiCH_2)_2AsGaPh_2]_2 (2) [4], the first dimeric mono(arsino)gallane for which the structure was reported, and in (But_2AsGaMe_2)_2 (3) [3], and the nearly planar unit in (But_2AsGaBu_2)_2 (4) [3], but is similar to, although less puckered than, the novel nonplanar (Ga-S)_2 form found in (Pr_SGaI_2)_2 which contains two four-coordinate Ga atoms and two three-coordinate S atoms [5]. A suspension of $(Me_3SiCH_2)_2AsLi$ [6] (2.03 g, 7.9 mmol) in hexane when added [7] to a hexane solution of $GaCl_3$ (0.46 g, 2.6 mmol) at -78 °C gave, after 18 h at room temperature, a brown mixture which, following filtration and solvent removal, redissolved in hexane. Crystallization (-78 °C) and cold filtration, followed by solvent removal, recrystallization, hexane washings, and drying in vacuo afforded $\{[(Me_3SiCH_2)_2As]_3Ga\}_2$ (1) as a pale yellow solid (0.46 g, 22% yield) m.p 71-149 °C (dec.) [8]. Crystals suitable for an X-ray structure determination were grown from a C_6F_6 solution [9]. Crystals of 1 comprise discrete centrosymmetrically-related dimers having the structure illustrated in Figure 1. Several features of this dimer attest to its highly strained nature. Thus, the Ga-As1-Ga'-As1' ring, with a dihedral angle of 13.6° [vs. $36.7(2)^{\circ}$ in the (Ga-S)₂ ring of $(Pr^{1}SGaI_{2})_{2}$] between the As1-Ga-As1' and As1-Ga'-As1' planes (mean endocyclic dihedral angle about the ring bonds = 10.2°) is, as shown in Figure 2, distinctly non-planar. Two of the ring bonds, Ga-As1' and Ga'-As1' at 2.540(1) \hat{A} , are equal and significantly shorter than the other pair, 2.559(1) and 2.581(1) %, of which the latter is the longest distance yet reported for such a bond and contrasts with the corresponding longest values of 2.530(1), 2.558(1), 2.557(3), and 2.553(1) $\frac{9}{8}$, respectively, for four-coordinate Ga in dimers 2, 3, and 4, and the unusual [(PhAsH)(R_2Ga)(PhAs)₆(RGa)₄] (R = Me₃SiCH₂) cluster [10]. All of the ring bonds of 1 are longer than the mean of the essentially equal exocyclic Ga-As bonded distances to three-coordinate As atoms, which, at 2.475 Å, is slightly shorter than the mean Ga-As distance for trigonal planar Ga in monomeric (Mes, As), Ga. The mean ring bond angles in 1 (84.81° at Ga, 95.30° at As) are similar to those encountered in dimers 2, 3, and 4 (range: 84.31-85.08° at Ga; 94.92-95.69° at As), but the exocyclic As-Ga-As angles involving the three-coordinate As atoms [122.37(5), 113.68(5)] differ significantly in response to the different intramolecular interactions involving substituents at each of the Ga centers. Corresponding exocyclic C-As-C angles show much less variation [103.0(4), 104.7(4)⁰] indicating the greater resistance of the As centers to bond angle deformation. Based on the cryoscopic molecular weight, 1 remains intact as a dimer in solution at low temperatures. It appears, however, the dimer is fluxional in solution [the fluxional properties of a dimeric bis(arsino)gallane have been reported] [1], as indicated by broadening and eventual coalescence of 13C NMR signals as the temperature is increased. Also, compound 1 is thermally unstable in solution at ambient temperatures and above, and slowly decomposes to the diarsine [(Me₂SiCH₂)₂As]₂ [1] and unknown products. Acknowledgement. We thank the Office of Naval Research for financial support. #### References - 1 (a) C.G. Pitt, A.P. Purdy, K.T. Higa, and R.L. Wells, Organometallics, 5 (1986) 1266; (b) C.G. Pitt, A.P. Purdy, K.T. Higa, and R.L. Wells, Abstracts of Papers, XX Organosilicon Symposium, Tarrytown, NY, U.S.A., April, (1986) P-2.27. - 2 C.G. Pitt, K.T. Higa, A.T. McPhail, and R.L. Wells, Inorg. Chem., 25 (1986) 2483. - 3 A.M. Arif, B.L. Benac, A.H. Cowley, R. Geerts, R.A. Jones, K.B. Kidd, J.M. Power, and S.T. Schwab, J. Chem. Soc., Chem. Commun., (1986), 1543. - 4 R.L. Wells, A.P. Purdy, A.T. McPhail, and C.G. Pitt, J. Organomet. Chem., 308 (1986) 281. - 5 G.G. Hoffman and C. Burschka, Angew. Chem. Int. Ed. Engl., 24 (1985) 970. - 6 $(\text{Me}_3\text{SiCH}_2)_2\text{AsLi}$ was produced by the reaction of $(\text{Me}_3\text{SiCH}_2)_2\text{AsH}$ [4] and BuⁿLi in hexane for 2 days at 60 °C, and isolated as an off-white powder. - 7 All manipulations were performed under a dry nitrogen atmosphere. STORY RECORD BUILDING ASSESSED SOLUTION BUILDING SOLUTION SOLUTIONS - 8 Found: C, 35.34; H, 8.29%; mol. wt., 1582 \pm 65 (eryoscopic, 0.268 g in 12.22 g cyclohexane). $C_{48}H_{132}As_6Ga_2Si_{12}$ calcd.: C, 35.25; H, 8.13%; mol. wt., 1636. ¹H NMR (300 MHz) (C_6D_6 , 21 °C): δ 0.32 (s, exo-Me₃Si), 0.37 (s, endo-Me₃Si), 1.32 and 1.79 (AB pattern, $^2J_{HH}$ 13.8 Hz, exo-CH₂), 1.71 (endo-CH₂); $^{13}C\{^{1}H\}$ NMR (75.4 MHz) (C_6D_6 , 21 °C): δ 0.98 (s, exo-Me₃Si), 2.02 (s, endo-Me₃Si), 6.69 (s, exo-CH₂), 10.59 (s, endo-CH₂). - 9 Crystal data: $C_{48}H_{132}As_6Ga_2Si_{12}$ (1), M=1635.59, triclinic, space group P1, a 15.050(3), b 25.417(8), c 12.621(4) R, α 93.73(3), β 110.68(2), γ 77.00(2)°, M=10.5 R^3 , Z=2, M=10.621, M=10.62 - 10 R.L. Wells, A.P. Purdy, A.T. McPhail, and C.G. Pitt, J. Chem. Soc., Chem. Commun., (1986) 487. ## Legends For Figures Figure 1. Molecular structure of $\{[(Me_3SiCH_2)_2As]_3Ga\}_2$ (1). Selected distances ($^{\circ}$) and angles ($^{\circ}$) are: Ga-As1 2.581(1), Ga-As2 2.478(2), Ga-As3 2.476(2), Ga-As1' 2.540(1), Ga'-As1' 2.540(1), Ga'-As2' 2.470(1), Ga'-As3' 2.474(2), Ga'-As1 2.559(1), As1-Ga-As1' 83.58(4), As1-Ga'-As1' 84.04, Ga-As1-Ga' 94.57(4), Ga-As1'-Ga' 96.02(4), As2-Ga-As3 122.37(5), As2'-Ga'-As3' 113.68(5), C111-As1-C121 103.0(4), C111'-As1'-C121' 104.7(4). Figure 2. The nonplanar (Ga-As) ring of compound 1. ANDEL EUTERDE PRODUCTION GRACESSE PROSESSE BRITISTES SOUSSES BRITISTES PROSESSES PROSESSES BRITISTES BRITISTES -7- # DL/1113/86/2 # TECHNICAL REPORT DISTRIBUTION LIST, GEN | | No.
Copies | | No.
Copies | |---|-----------------------|--|---------------| | Office of Naval Research
Attn: Code 1113
800 N. Quincy Street
Arlington, Virginia 22217-5000 | 2 | Dr. David Young
Code 334
NORDA
NSTL, Mississippi 39529 | 1 | | Dr. Bernard Douda
Naval Weapons Support Center
Code 50C
Crane, Indiana 47522-5050 | 1 | Naval Weapons Center
Attn: Dr. Ron Atkins
Chemistry Division
China Lake, California 93555 | 1 | | Naval Civil Engineering Laboratory
Attn: Dr. R. W. Drisko, Code L52
Port Hueneme, California 93401 | 1 | Scientific Advisor
Commandant of the Marine Corps
Code RD-1
Washington, D.C. 20380 | 1 | | Defense Technical Information Center
Building 5, Cameron Station
Alexandria, Virginia 22314 | 12
high
quality | U.S. Army Research Office
Attn: CRD-AA-IP
P.O. Box 12211
Research Triangle Park, NC 2770 | 1 | | DTNSRDC
Attn: Dr. H. Singerman
Applied Chemistry Division
Annapolis, Maryland 21401 | 1 | Mr. John Boyle
Materials Branch
Naval Ship Engineering Center
Philadelphia, Pennsylvania 1911 | 1 . | | Dr. William Tolles Superintendent Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375-5000 | 1 | Naval Ocean Systems Center
Attn: Dr. S. Yamamoto
Marine Sciences Division
San Diego, California 91232 | 1 | END 4-8 DT 10